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DYNAMICS OF NON-NEWTONIAN FLUID INTERFACES 
IN A POROUS MEDIUM: INCOMPRESSIBLE FLUIDS 
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SUMMARY 

This paper concerns the applications of frontal advance theory to the dynamics of a moving flat interface in a 
porous medium, when both displacing and displaced fluids are of power law behaviour. The rheological 
effects of non-Newtonian behaviour of these fluids on the interface position and its velocity are numerically 
illustrated and discussed with regard to the practical implications in oil displacement mechanisms. The 
results obtained should be useful in finding an optimal policy of injection in order to control the dynamics of 
the moving interface in field projects of enhanced oil recovery floods. 
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1. INTRODUCTION 

A knowledge of the rheological effects of non-Newtonian bevahiour of the displacing fluid in oil 
displacement mechanics is of considerable interest in oil reservoir engineering; a high-viscosity 
fluid-for example, water with dissolved polymer-is injected into the oil reservoir to modify the 
mobility ratio between the displacing fluid and the displaced one. 

As the experimental studies have shown, the injection into the oil reservoir of certain non- 
Newtonian displacing fluids having a pseudo-plastic behaviour may improve the volumetric 
sweep efficiency by minimizing the instability effects on the moving interface separating the 
displaced and displacing fluids. The use of these displacing fluids to control the mobility of the 
injected water has increased continuously over the last few years, and a recent review reported that 
a great number of field tests were estimated to be successful from both a technical and an 
economical point of view.' These non-Newtonian displacing fluids, such as polymer solutions and 
emulsions of oil in water, exhibit in a certain range of shear rate variation a pseudo-plastic 
behaviour in which the apparent viscosity decreases with increasing shear rate. One obvious 
consequence of this rheological behaviour of the displacing fluid is a possible new approach for 
eliminating the viscous fingering effect in oil displacement mechanics, which appears to be directly 
responsible for the ultimate low oil recovery in water flooding projects. From this point of view, 
the recent increasing interest in knowing the rheological effects in the flows of nowNewtonian 
fluids through porous media, in particular on the dynamics of the moving interface, is well 
justified.', * 

A probelm of special interest at the present time in oil reservoir engineering is the determination 
of the interface position at a given time. Two situations may arise in practice: the fluid injection 
into the oil reservoir can be carried out at a constant pressure or at a constant flow rate. For the 
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case of constant flow rate the interface location is determined by assuming that the two fluids are 
incompressible; however, the case of constant pressure of injection will require the solution of a 
system of non-linear equations, as will be shown further on. As shown recently in the literature, the 
stability conditions for a non-Newtonian fluid interface under constant flow rate of injection lead 
to a critical interface velocity; whenever the interface velocity is greater than the critical velocity, 
an unstable interface will occur and hence a viscous fingering effect will Obviously, under 
conditions of constant pressure of injection and production, the interface velocity is unknown. As 
a result, the dynamics of the moving interface under constant pressure of injection is relevant to 
the determination of the interface velocity, expressed in terms of its position, and therefore to the 
interface stability problem as well.'-'' The objective of this paper is to investigate the dynamics of 
the moving interface separating non-Newtonian displacing and displaced incompressible fluids of 
power law behaviour. Sections 2 and 3 deal with the one-dimensional case, while Sections 4 and 5 
are devoted to the case of plane radial flow. 

2. ONE-DIMENSIONAL FLOW 

The sketch of the dynamics of a flat moving interface in a linear displacement mechanism is shown 
in Figure 1. 

Under conditions of constant pressure of injection and production the following external 
boundary conditions arise: 

x=o, p1 (0) = p e  =constant, (1) 

x=L,  p 2 ( t )  = pw =constant, p e  > p w ,  (2) 
while at the moving interface, neglecting the surface tension effect, one has 

x = 5@), 
01 (5)  = u2(5) ,  

P I  ( 5 )  = P 2  (5)  = P*, (3) 

(4) 
in which t ( t )  is the interface location and p* is the pressure at the interface. 

fluids, is expressed as3 
As whown previously, the modifigd Darcy's law, including the rheological effects of power law 

~~~ 

L f ( t ) i  

Figure 1. Illustration of flow system in linear displacement mechanism 
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where 

The notations used are given in Appendix I. 
From the continuity equation for incompressible fluids one has i3ui/dx = 0, i = 1,2, whereas from 

relations (5 )  and (6) the pressure distributions ahead of and behind the moving interface may be 
written, taking into account the conditions specified in (1H4), as follows: 

X 
P I  (x, t)= P e  -be -P*) ~ O < X  < 5(tb 

5(t) (8) 

Since the external boundary conditions do not change in time and the two fluids are 
incompressible, one expects to have a steady flow, i.e. the pressure distributions are time- 
independent. However, the presence of a moving interface in our flow system shows that the 
pressure distributions (8) and (9) depend on the interface position ( ( t ) ,  which is time-dependent. 

From (5),  (6), (8) and (9) we have 

and 

When these relations are introduced into (4), one obtains 

Relation (12) determines the pressure p* at the interface location l(t). 
On the other hand, the interface velocity is determined by the relation 

so that from the previous relations we have 

Therefore the coupled equations (12) and (14) determine the dynamics of a non-Newtonian fluid 
flat interface, i.e. the functions V ( t )  and {(t). Integration of this system of non-linear equations 
requires a numerical procedure, since difficulties associated with finding the exact analytical 
solution for system (12) and (14) exist in almost all non-Newtonian flows, even for simple 
geometrical flow systems. 

Befeore giving a numerical solution for the general case, we will consider the particular case 
when n l = n z = n .  This case allows us not only to develop a tractable analytical solution for 
illustrating the rheological effects on the dynamics of the moving interface, but also to check the 
results obtained by our numerical procedure, which will be shown in the next section. 
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When n,  = n 2 = n ,  from (12) one obtains 

in which 

is the mobility ratio. 
By means of ( 1 9 ,  equation (14) becomes 

Assuming that the injection process is started at  t =0, then at t = O  one has t(0) = O .  As a result, 
integration of (17) leads to 

T= (1 + n) n ( M  - 1)  [ ( l + ( M - l ) ~ ) ( l + n ) ’ n - l ] ,  

where T is the dimensionless time, expressed as 

Froin the previous relations, the case of Newtonian displacing and displaced fluids, i.e. n= 1 ,  yields 
a well known result, termed in the literature the frontal advance theory: 

The interface velocity expressed in terms of its position is obtained from the relation 

in which [ ( t )  is determined from (18) and M from (16). 
A problem of special interest in oil reservoir engineering is the prediction of the time required for 

the interface to reach a given length of the flow system. This travel time may be determined from 
( 1  8) when 5 = L, L being the distance between injector and producer. It is interesting to remark 
from (21) that the interface movement is accelerated for M < 1 ,  while for M > 1 it is decelerated. 
When M = 1 the interface movement will be at a constant velocity, as can be readily seen from (21). 

3. NUMERICAL SOLUTION 

As pointed out earlier, for the general case the integration of the system of coupled non-linear 
equations (12) and (14) must be carried out numerically. Using the notation 
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equations (12) and (14) may be written as 

M5 k 2  A P  Z"+- 
L - < -pef2(L- <) = O, 

with the initial condition <(O)  = O  and the notations 

A P =  Pe - pw 9 m = n2/nl. 

From (22) the pressure at the interface is 

To start our numerical procedure of solving the system of equations (23) and (24), we take into 
account the fact that for a short time the interface location is close to its initial position, 
corresponding to t = O ,  and the pressure p* at the interface location x = <  does not differ 
significantly from the injection pressure p e .  In this case, since p * = p e  in (26), rZ+O, so that (23) 
yields 

and (24) gives us for the interface position at short time the approximate analytical solution 

In solving (23) and (24), we look for the positive root of (23). To locate this root, we use the notation 

and note that 

Since a starting positive value for < is provided by relation (28), we now are able to solve 
equations (23) and (24) simultaneously by combining two numerical methods: one for the 
transcendental equation (23) and one for the differential equation (24). 

To clarify our numerical procedure, let us suppose that we have determined the interface 
position t(t) for certain values of time, t o ,  t , ,  . . . , t , .  For example, for to =0, ((0) = 0 and, if t ,  is a 
short time for which (28) provides a reasonable approximation <(ti), we have at the starting stage 
<(to) and <(ti). For each <(ti) evaluated previously, equation (23) may be solved numerically using 
the fact that F(2) changes sign in the interval 

so that the corresponding Zi may be determined. Further, applying the implicit multistep 
Adams-Moulton method" to equation (24), we can evaluate t(t), for t = t, +At. The numerical 
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procedure described above has been applied for some cases of practical interest and the results are 
illustrated in Figures 2-5 (see Section 6). 

4. PLANE RADIAL FLOW 

For plane radial flow the following equations are valid: 

and 

(Ru,)=O, i =  1, 2. 
i a  _ _  
R aR 

I I 1 I 

kl=k2=l Darcy (lO-'*rn: 
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Figure 2. Effect of power law exponent on interface location for linear displacement mechanism 
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Figure 3. Effect of power law exponent on interface velocity for linear displacement mechanism 
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Figure 4. Effect of power law exponent on interface location for radial displacement mechanism 
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Figure 5. Effect of power law exponent on interface velocity for radial displacement mechanism. 

From (31) and (32) it turns out that 

a 2 P l  n1 aP1  

d 2 P 2  n 2  aP* 

- + -- = 0, R,<R<<(t), aR2 R aR 

- + --=O, <(t)<R<R,. 
aR2 R aR 

(33) 

(34) 

It should be noted that the only flow system giving plane radial flow is that bounded by two 
cylinders on which the pressure is uniform. Obviously this case includes the situation of a centrally 
located well in an oil reservoir where fluid is injected at a constant pressure. As a result, the 
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following boundary conditions arise naturally: 

at R = R w ,  Pl(Rw)=Pe, 
at R = R e ,  P2(Re) =Pw, Pe >Pw, 

while at the moving interface R = <(t) we have the conditions specified in (3) and (4). 
Equations (33)-(35), (3) and (4) determine the pressure distributions expressed as 

(35) 

(40) 

Since the equations describing the mathematical model of plane radial flow are nan-linear, a 

Before solving the general case numerically, we will present, as for the one-dimensional flow, an 

k,(l  -nz)(P*-Pw) llnz 

(P15YC l-nl-R:-nl) p2rn2(Ri-"2- t l - n 2 )  ) k , ( l  -nl)(Pe-P*) 

numerical procedure should be used. 

analytical solution for the particular case n, = n ,  = n. In this case (40) yields 

(R,'-"-5'-")pe+(<' - n -  Rk-")pwM 
R,' - n -  5 1  - n + M ( 5 1  -n-R;-n) P*(()= 

where M is given by relation (16). Introducing the function 

the interface velocity V determined by (38) is expressed as 

Relations (13) and (43) lead to the differential equation 

with t(O)= R, at t =O. R, being the well radius. Finally equation (44) yields 

T(C)=J;w 51//(0d5, 

(43) 

(45) 
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where the dimensionless T is defined as 

The integral in (45) can be analytically performed if and only if at least one of the expressions l ln ,  
1/(1- n), l/n(l - n) is an integer. Otherwise a numerical quadrature formula is required. 

To validate our results, let us compare the case n,  = n, = 1 with that when nl  = n2 = n and n+ 1.  
For n ,  = n 2 =  1, i.e. the case when both fluids are Newtonian, the pressure distributions are 
expressed as 

From the velocity equality at the interface, i.e. at R = 5 ,  one obtains 

PeMln(t/Rw)+Peln(Re/tJ) 
'*(')= In (Re/t) + M ln(t/Rw) 

On the other hand, relation (41) corresponding to n, = n, = n may be rewritten as 

' 

Since Rw/Re 4 1, t/Re < 1 and n < 1, the following asymptotic expressions are valid: 

($)l-" 1: 1 +(1 -n)ln--, RW 
R e  

5 
Re 

N 1 +(1 -n)ln-. 

Introducing (51) and (52) into (50), one obtains a relation identical to (49). 

5. NUMERICAL SOLUTION 

In this section we are concerned with the numerical solution of the coupled non-linear equations 
describing the dynamics of the moving interface in a radial flow geometry. For this purpose it is 
convenient to introduce the notation 

so that (40) may be written in the form 

where m = n2/nl. 
For the interface velocity we have the differential equation 
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with the initial condition ((0) = R,. From (53) one has 

The physical considerations for short time, previously shown for the one-dimensional case, are 
also valid for radial flow. As a result, from (56) we have ( ( l - " l - R ~ - " ) Z + O  when t+0, whereas 
from (54) and (55) it turns out that 

Since (/Re 6 1 and n2 < 1, the approximate relation 

may be used in (57), yielding the equation 

This equation defines t(t) for short time. We will now show that (59) has a positive root. Denoting 

we have $(O) < 0 for any t > 0. 

root between 0 and t*. 
Taking t = t ,  small enough, one can find a (* for which $(S*)>O and therefore t,b(()=O has a 

To find t*, we note that if we choose for ( in (60) a value such that 

then 

On the other hand, taking in (62) 

we have t,b((*)>O. [* defined by (63) should also satisfy inequality (61), from which one finds a 
condition for t ,  which is expressed as 

Now one can solve equation (59) numerically knowing that $(t) changes sign in the interval 
(0, (*). At this point we have found t(0) and ((t ,)  for the coupled equations (54) and (55). 

To determine the interface location ( ( t )  for further time steps, one can use, as for the one- 
dimensional flow, a combination of numerical methods in order to solve the transcendental 
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equation (54) and the differential equation (55). For this purpose we note that in (54) F ( 2 )  changes 
sign in the interval 

so that the root of F(Z)=O can be evaluated for each ( ( t )  known." The implicit multistep 
Adams-Moulton method'' applied to (55) will provide us with an evaluation of the interface 
position for a new time step. 

6. DISCUSSION OF RESULTS 

In order to illustrate the behaviour of the numerical procedure presented in Sections 3 and 5, the 
following example, taken from practice, has been considered: L = 50 m, cp = 02, k ,  = k ,  = 1 Darcy, 
pe=50atm, pw=O, Re=50m and R,=lO-'m. 

From various rheological data published in the literature, a relationship between H and n has 
been established by a fitting procedure and expressed as 

H = (0.1 + 0.08/n7)/100. 

The case corresponding to one-dimensional flow is presented in Figures 2 and 3. Figure 2 shows 
the interface position as a function of time, while Figure 3 shows the interface velocity behaviour. 
The values of the power law exponents n, and n2 are indicated in the figures. 

The plane radial flow case is presented in Figures 4 and 5 for the same data as used in one- 
dimensional flow. 

The particular case n, = n2 = n, which was analytically solved in Sections 2 and 4, has also been 
shown in Figures 2-5 in order to validate the numerical approach shown in Sections 3 and 5 for 
n, # n 2 .  Perfect agreement between the data obtained from analytical solutions and those 
obtained from numerical solutions was found. 

Figures 2-5 illustrate the rheological effects of power law displacing and displaced fluids on the 
dynamics of a moving interface based on the advance frontal theory for non-Newtonian fluids. 

A relevant result observed in the interface velocity behaviour (see Figure 3) is that for one- 
dimensional flow when n ,  > n2 the interface movement is accelerated, whereas when n, <n, it is 
decelerated. The case n,  = n2 leads to a uniform movement, i.e. at a constant interface velocity, as 
expected. 

From the results shown in Figures 2-5 it is clear that the dynamics of the moving interface 
involved in oil displacement mechanics with non-Newtonian fluids of power law behaviour may 
be efficiently controlled by means of an appropriate strategy of optimal selection of rheological 
parameters of the injected fluid, expressed in terms of displaced fluid and reservoir properties. 

7. CONCLUDING REMARKS 

In this investigation we have presented a model based on the frontal advance theory for describing 
the dynamics of non-Newtonian fluid interfaces involved in oil displacement mechanics in a 
porous medium. A system of coupled non-linear equations governing the flow mechanism has 
been obtained and solved numerically. From the numerical solutions the interface location and its 
advance velocity as a function of time may be determined. The cases of linear and radial flow 
geometries under conditions of constant pressure of injection and production have been 
considered. 
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Several numerical examples of practical interest in oil reservoir engineering have been 
illustrated in Figures 2-5, from which it turns out that the interface movement may be accelerated 
or decelerated depending on the values of the power law exponents of the displacing and displaced 
fluids. 

Based on the results obtained in this investigation, it is obvious that the dynamics of non- 
Newtonian fluid interfaces of power law behaviour may be controlled. For this purpose a strategy 
of optimal selection of the rheological parameters of the displacing fluid expressed in terms of 
displaced fluid and reservoir properties is required. 

APPENDIX I: NOMENCLATURE 

H 
k 
L 
M 
n 
P 
P e  

P W  

R 
Re 
R w  
t 
T 

V 
V 

consistency index, rheological parameter in power law model 
permeability 
length of the flow system 
mobility ratio 
power law exponent, rheological parameter in power law model 
pressure 
injection pressure 
production pressure 
radial distance 
external radius 
well radius 
time 
dimensionless time 
fluid velocity in porous medium 
interface velocity 

Greek letters 

cp porosity 
5(t) interface position 
P viscosity 
Per effective viscosity 

Subscript 

1 
2 

refers to the displacing fluid 
refers to the displaced fluid 

APPENDIX I1 

To find a root of the equation 

F(z)=O 

in the interval (a, b) knowing that F(a)F(b) < O ,  the Brent algorithm" can be used. This algorithm 
is a combination of linear interpolation, inverse quadratic interpolation and bisection. 

A subroutine based on this algorithm with a superlinear convergence has been constructed and 
is available in the International Mathematical and Statistical Library (IMSL) under the name 
'ZBRENT'. 
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The implicit multistep Adams-Moulton method for the equation 

Y ‘ = f ( Y )  
with the initial condition 

Y(to)=Yo 

is given by the formula 

w h e r e y j = y ( t j ) , y ~ = f ( t j , y j ) , j = O ,  1,. . . , n, l<k<n,assumingthaty,-iandthereforey~-i,i=l, 
2, . . . , k, have been previously calculated. The truncation error in (67) is y k h k  + i.e. of order k + 1. 
The coefficients ui, pi and y k  can be found with the procedure given in Reference 11. 

Equation (67) is an implicit equation in y , ,  since F ( y , )  is non-linear in y.. A predictor corrector 
process is employed to solve (67) as described in Reference 11. Based on the approach described 
above, a subroutine named ‘DGEAR’I3 of order up to twelve has been constructed and is 
available in the International Mathematical and Statistical Library (IMSL). 
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